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Field Equations for Gravity Quadratic
in the Curvature
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Vacuum field equations for gravity are studied having their origin in a Lagrangian
quadratic in the curvature. The motivation for this choice of the Lagrangian—
namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills
type—is criticized, especially the implied view of connections as gauge potentials
with no dynamical relation to the metric. The correct field equations with respect
to variation of the connections and the metric independently are given. We deduce
field equations which differ from previous ones by variation of the metric, the
torsion, and the nonmetricity from which the connections are built.

1. INTRODUCTION

Fairchild (1976) has proposed a gauge theory of gravity based on earlier
elaborations by Stephenson (1958) and Yang (1974). In establishing the
Lagrangian of gravity and deriving the field equations, he argues in complete
analogy to gauge theories of the Yang-Mills type. So the linear connections
I',,* of affine spaces are viewed as gauge potentials of the gauge group
GL(4, R) defining the proper gauge-covariant derivative. The gauge field is
given then by the curvature

R,,,d“'=26[,,FK],15—2F[,,|,1"I“,,(],,5 (11)
To conserve the analogy to gauge theories, the field equations for matter-
free gravity are given by variation of the action,

I= Jd“x g ?Rux, " Riso’g" g (1.2)

with respect to the “gauge potentials” [,z°. Since in Yang-Mills theories
the gauge potentials have no dynamical relation to a metric (metric in group
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space), and no symmetries with respect to indices of gauge potentials can be
given a priori, these facts should also be taken over to the above gauge-
analogy gravity. Therefore one gets two distinct sets of field equations: the
first by varying (1.2) with respect to the connections I',g° (with torsion and
nonmetricity) viewed as dynamically decoupled from the metric, and the
second by varying (1.2) with respect to the metric. There are severe points
of objection against this program of Fairchild (1976). Before coming to
these, we mention that the equations derived in Fairchild (1976) are wrong.
Fairchild has given a hint to this in an erratum to that work. We will derive
the correct field equations by varying the above Lagrangian with respect to
the connections (with torsion and nonmetricity) independent of the metric,
as was tried by Fairchild (1976), and by varying with respect to the metric.

In gauge theories the indices of the gauge potentials ¢,,” are of different
character (marked here by Greek and Latin letters); the Greek index is a
space-time index, while the Latin indices are those of the inner symmetry
group, the gauge group [e.g., SU(2)]. Therefore no assumptions about index
symimetries can be made a priori. This is in contrast to metric theories of
gravity. There the group of space-time transformations and the gauge
group are identical and all indices are of the same kind. There are strong
physical reasons to split the connections I's° into a symmetric and an
antisymmetric part with respect to the lower indices. The antisymmetric part
Tiap)”=:S,5° is called torsion and is related to spin in geometric theories of
gravity (Bahmann, 1990); it should be omitted if one postulates a strictly
local Minkowskian structure of gravity.

In geometric theories of gravity the metric plays the fundamental role
of a dynamical variable and not the linear connections, in contrast to gauge
theories. All other attempts are more or less mathematical and are inspired
by the wish to draw an analogy to gauge theories, but are physically not
justified, in contrast to Bahmann (1990). A covariant derivative is defined
with the linear connections. The symmetric part of the connections can be
separated now into two classes, depending on whether the covariant deriva-
tive of the metric itself vanishes or not. The quantity —V,gs, = Qup, is
called the nonmetricity (V means the covariant derivative with respect
to the connection). There are strong physical reasons for vanishing non-
metricity (e.g., constant length of 4-vectors during parallel transport).

The most general linear connection I';* therefore reads (Hehl et al.,
1976)

1—‘ij k = klA;‘:'?c(% agbc - gcdSabd+ % Qabc) ( 1 3)
with |
Aske = 59 5255+ 5¢5785 — 8767 55 (1.4)
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The first part in (1.3) is the usual Christoffel symbol corresponding to a
Riemannian geometry (vanishing torsion and nonmetricity), the second part
consists of torsion contributions, and the last part consists of contributions
from the nonmetricity. The fundamental dynamical variables are therefore
the metric, the torsion, and the nonmetricity and not the linear connection
built of them. In obtaining field equations for gravity with respect to the
action (1.2), these are the quantities after which it should be varied
independently.

One cannot argue with the Palatini method, which means that the result-
ing equations for gravity are the same if one varies independently with
respect to the connections and metric making no prior assumption about
the connections, or making prior assumptions about the metric dependence
of the connections and then varying with respect to the metric alone.
Stephenson (1958) has shown that his method is restricted to symmetric
connections and the Einstein-Hilbert Lagrangian only.

As a result of all the mentioned differences between gravity and gauge
theories, we conclude that varying the proposed action (1.2) with respect to
the connections and the metric independently is physically not justified. The
analogy of gravity to gauge theories suggested by Fairchild does not exist.
Further, the action (1.2) can only serve as a correction to the Einstein-
Hilbert action, since the Newtonian limits gets lost (Fairchild, 1976). These
corrections may be important in regions of high curvature or in a somewhat
quantized version of general relativity. From this point of view and to correct
the equations in Fairchild (1976), we calculate the field equations corre-
sponding to the action (1.2).

In Section 2 we give some preliminary fundamental equations and rela-
tions needed in the following calculations.

In Section 3 we perform the variations with respect to the connections
and metric independently, presenting the corrected equations of Fairchild.

In Section 4 we take into account the dependences of the connections
with respect to the metric, torsion, and nonmetricity and present the field
equations for the metric, torsion, and nonmetricity.

2. PRELIMINARY RELATIONS
We make the following abbreviations:
gi=—detg,,; e=g (2.1
The connections I';* can be written as

I‘ij k= klAjt'li?t(%aagbc_gcdSabd—l— %Qabc) (22)
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with

Rose
A= 57805+ 505055~ 575255 (2.3)
Here
Sabd:z r[ab]d (24)
and

Qabc =— Vagbc

(2.5)
are the torsion, resp. the nonmetricity, and V means the covariant derivative
with respect to the connection (2.2).

Since g is a scalar density of weight —2, we get

Vpg =&r 2FP5€g

(2.6)
We make the abbreviation
[,i=T, (2.7)
(2.6) written for e=/g reads
Vee=e,—T e 2.8)
With (2:2), (2.3), and (2.7) we get
I,=18%,+2Z, (2.9)
with
Zy =180 (2.10)
The variation of g gives
0g=—ggu« 68" (2.11)
Since
88" =—g""g"’ 6gup (2.12)
we get
5g=28"" 68up (2.13)
It follows immediately that

28 =2"%gup.p (2.14)
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(2.14) in (2.9) gives
g,t2, (2.15)
respectively,

I“p=ée,p+Zp | - (2.15a)

(2.15) in (2.6), resp. (2.15a) in (2.8), give

Vog=—287, (2.16)
respectively,

Vee=—eZ, 2.17)

One sees immediately that in the Riemannian case (i.e., vanishing torsion
and nonmetricity) V,g, resp., V, e vanishes.
Some further useful relations are

11 _
Tef=--g,+Z, (2.18)
2¢g
respectively,
1 _
Tef=—e,+Z (2.19)
ép ¢ P P
with
Z,=—28,:5+ 3890,z (2.20)

(2.18) with (2.15), resp. (2.19) with (2.15a), give, with the aid of (2.10) and
(2.20),

I,—Te, =28,:° (2.21)

which vanishes of course for vanishing torsion.

3. VARIATION WITH RESPECT TO CONNECTIONS AND
METRIC INDEPENDENT OF EACH OTHER

The action [ is given by

I=Jd4x e 3.1
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with the Lagrangian density given by

&L =Ryxp” Rics’g"'g"* (3.2
Here R,.,° means the curvature

Ryunp” =200,T k15" + 20 e " Tinp” (3.3)

3.1. Variation with Respect to the Connections

Variation of (3.1) with respect to I',z" gives

5I= fd"xe[ﬂ 0T ,p" + 02 ———— 00457 5]
6Fap7 araﬂ &

0 0%
ol
s’ 0Tap’

—eg agy ]5r,,,,7+(e—-‘?fzy— 51":1/37) }
0lap” £ 0Fap” ¢ £

Dropping the 4-divergence leads, with the aid of (2.8), to

NS
) lap” ¢ " OTap’:

(Vo) 22 ]mp (3.4)
) WA

With (3.3) we obtain

Ry’
T s

Ri.o"g"*g"¢=2T PR %+ 2I',,°R* * (3.5)
By index transformations u - A, k > &, p—> 0, 6—>p, A—> u, and £k we
get

ORc0v

P Ry, 8" g~ =2T,PR%,°+ 2T ;,’R* F (3.6)
ap?
(3.5) and (3.6) give

0
T ap”

=4(T.."R*,°+T,,”R*,P) (3.7
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Further, we get
OR, "
e Ryt g = 2R (38)
[7)

Performing the same index transformations as above and adding the result
to (3.8) leads to

0L

pree =4R* * (3.9)
aff &
So we get
0¥ "
0¢ 7 =4R%.F, (3.10)
af &

We now express the usual partial derivative in (3.10) by the corresponding
covariant one and obtain

07
[2) L

0 =4R* P, —4T ;YR P+4T PR °

+4T, PR P — 4T, "RV P (3.11)
Inserting (3.11), (3.9), and (3.7) and (3.4), we get

5I=—4 Ja"’x 0T 57 [Ve(eR,P)

+e(T:~Ty )R P —ele,"R?Y 7] (3.12)
From the definition of the curvature (3.3) it follows that
R F= Rl P (3.13)
From the definition of the connection (2.2) it follows that
[y =T+ Tp* (3.14)
with
Ty =8

Using (3.14) and (2.21), we obtain for (3.12)
5I=—4 Jd“x ST 45" [Ve(eR,P)

+2eSg, YR, —eS;,"RY.F] (3.15)
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and thus for the field equations with respect to the variation of I', 5"
Ve(eR* %) +2eS;, YR P —eS;, "R P =0 (3.16)

This equation differs from that found by Fairchild (1976), equation (12), in
the two terms with explicit torsion. Fairchild’s equation therefore is correct
only in the case of symmetric connections.

3.2. Variation with Respect to the Metric

Variation of the action (3.1) with respect to the metric (the connections
are treated as independent of the metric) gives

8= j d*x Ry, Rics”(8g" 8" e+ g"*0g" e+ Seg"*g™®)  (3.17)
With (2.11), (2.1), and (2.12) we obtain
81=— Jd“x e[R**, 7R 0P + R* TR ;P — 3" R* )" Roos”108ap  (3.18)
Using the antisymmetry property (3.13), we finally get the field equations

e[RaspaRﬁEUp_‘l_tgaﬁRLgpongo_P]=0 (319)

This equation is identical to that found by Fairchild (1976), equations
(25) and (26).2

4. TAKING INTO ACCOUNT THE EXPLICIT DEPENDENCE
OF THE CONNECTIONS OF METRIC, TORSION, AND
NONMETRICITY; FIELD EQUATIONS WITH
RESPECT TO THESE QUANTITIES

4.1. Variation with Respect to the Metric

With (3.15) and (3.18) we get
§I= Jd"x {—2e[R**,°R" .o" — 38" R* ,° R1c6”] 020y

—4[V:(eR**,P)+2eS:,YR* ,F —eS:,"R* ,P1 6T .57} (41)

*Equations (3.16) and (3.19) can also be derived from equations (55) and (56) in Hehl et al.
(1989) by correspondingly specifying the gravitational Lagrangian, since these equations are
general Euler-Lagrange equations.
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If we are interested in the field equations with respect to the metric, we
have to take the variations of I',;” with respect to the metric and its deriva-
tives. With the relation (2.2) we therefore obtain

5raﬂ _[ g/(ulr 'V)—g"[A%IZ,(;"S,,bIV)] 6g,,v
+ 38" NG 88sen (4.2)

Since, p, v, resp. b, c, are summation indices and the metric is symmetric,
the symmetrization carried out above is implied. As abbreviation we write

Ve(eR* Py +2eS;, " R* P ~ eS¢, "R*Y P=1 U * (4.3)

We now treat that part in the integral (4.1) which is proportional to
0T .5 and write for this with the abbreviation (4.3)

Olpar=—14 Jd"’x U®,? 8T, (4.4)

By insertion of (4.2) in (4.4), the part proportional to the derivative of the
metric becomes

61Par/par=— Jd“x U® ﬁ( g/lAa(bc) 6gbca)

=4 J d'x (U, 32855 580,

—(U*, 187" A5e)) 0 O8] (4.5)

Dropping the 4-divergence and insertion in (4.4) gives
5Ipa, Jd" [ Y(llir V) ve. ,B_gy/Aab(mS vy Ua 8

—3(U", P NS ] gy (4.6)
Performing in (4.3) the covariant derivative of e using (2.17) gives
v*f=er** 4.7
where the tensor 7%,° reads
7%/ :=R . +28:, YR~ S;, "R/~ Z.R* ° (4.8)

with Z; = %g"”Qgpa.
With these abbreviations we get

(U" B V’A"(HV))a_e Ta B V'A"(’“')—l-e(T“ B ylAn(uV))a 4.9)
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The second term on the right side expressed by the covariant derivative gives
(T*,Pg" M) o= (T*,Pg" AFL")
— Ty (T, g"ABY)
- Fa.,,(”l(Ta yﬂgﬂAZ",;‘[V))
— T, (T, g" Aja") (4.10)
Using (2.19) to express I',,* in (4.10) and inserting in (4.9) gives
(U",Pg" ASED) o= (T, P ASED)
—eZ (T, g"Agl")
— el W™ Pg ' ARHY)
— el (T", 8" Aja)”) (4.11)
Using the given symmetry in g, v in (4.11) and inserting in (4.6) gives
Sl =—4 Jd“x e[~ T T",F — g AGH T PS4
+2ZT g7 AR+ 2(S + Ty )T g7 (B + AR)
— (T, Pg"AG") ]l 88y (4.12)
With the aid of the defining relation for Aj in (2.3) we get
AGL+ A =2 5151 81 + 28485 67 + 25§87 61 (4.13)
We therefore obtain

3 (Sab(vi + 1"'( b)(Vl) Ta B yl(Aalu)b ab|y))
— Sab(VI(TIu)y[aIg/Ib] + T[alylu)gﬂb]) + l"(ab)(VlT(blyla)gﬂp) (4. 14)

-T, (VITH ﬂg?’lu)_S (VITa B VlAﬂblu))
=-T, (VITa B ylu) _ S, (VI(Tb a ylu)+Talu) yb_Tlu) Va) (4 15)

The addition of (4.14) and (4.15) which is needed in (4.12) vanishes, so that
we finally get, with the aid of (2.20),

Olpar=—2 Jd‘x el(=28u + 28" Qupo)(T" 8" N54")

—(T*,"g"' A5 a) 8y (4.16)
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(4.16) with (4.4) and (4.10) finally gives the field equations with respect
10 gy
Ruz:po'Rvgo_p_‘nguVRlspangap
+(—2805" + 387 Qapo) (T, g7 AFE")
—(T*,Pg"A§E) =0 (4.17)

In the Riemannian case (vanishing torsion and nonmetricity) we get [see the
definition of T°,” in (4.8)]

REIWD o+ 3R¥E PR o — 4" R, Ree” =0 (4.18)

4.2. Variation with Respect to the Torsion and Nonmetricity
The starting point is

61=~4Jd4x v*,f 5Fﬂﬂ7=—4jd4x eT*,” 8T up” (4.19)

With (2.2) the variation of I',,” with respect to the torsion reads
0T qp"
88,.,°

Inserting (4.20) in (4.19) gives

5SuVG= _gylA%‘a‘;]cgca 5Suvo (420)

SI=+4 Jd“x gAY g0 5S,,° eT" P (4.21)

and therefore the field equations with respect to the torsion are
A g"'geo TP =0 (4.22)

Following the same procedure with respect to the nonmetricity gives—by
taking into account its symmetry—the corresponding field equations for
nonmetricity :

ARG, P =0 (4.23)
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